1,231 research outputs found

    Control of telomere length by a trimming mechanism that involves generation of t-circles

    Get PDF
    Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself

    Improvements in survival of the uncemented Nottingham Total Shoulder prosthesis: a prospective comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The uncemented Nottingham Total Shoulder Replacement prosthesis system (Nottingham TSR) was developed from the previous BioModular<sup>® </sup>shoulder prosthesis taking into consideration the causes of the initial implant's failure.</p> <p>We investigated the impact of changes in the design of Nottingham TSR prosthesis on its survivorship rate.</p> <p>Methods</p> <p>Survivorship analyses of three types of uncemented total shoulder arthroplasty prostheses (BioModular<sup>®</sup>, initial Nottingham TSR and current Nottingham TSR systems with 11, 8 and 4 year survivorship data respectively) were compared. All these prostheses were implanted for the treatment of disabling pain in the shoulder due to primary and secondary osteoarthritis or rheumatoid arthritis. Each type of the prosthesis studied was implanted in consecutive group of patients – 90 patients with BioModular<sup>® </sup>system, 103 with the initial Nottingham TSR and 34 patients with the current Nottingham TSR system.</p> <p>The comparison of the annual cumulative survivorship values in the compatible time range between the three groups was done according to the paired <it>t </it>test.</p> <p>Results</p> <p>The 8-year and 11-year survivorship rates for the initially used modified BioModular<sup>® </sup>uncemented prosthesis were relatively low (75.6% and 71.7% respectively) comparing to the reported survivorship of the conventional cemented implants. The 8-year survivorship for the uncemented Nottingham TSR prosthesis was significantly higher (81.8%), but still not in the desired range of above 90%, that is found in other cemented designs. Glenoid component loosening was the main factor of prosthesis failure in both prostheses and mainly occurred in the first 4 postoperative years. The 4-year survivorship of the currently re-designed Nottingham TSR prosthesis, with hydroxylapatite coating of the glenoid baseplate, was significantly higher, 93.1% as compared to 85.1% of the previous Nottingham TSR.</p> <p>Conclusion</p> <p>The initial Nottingham shoulder prosthesis showed significantly higher survivorship than the BioModular<sup>® </sup>uncemented prosthesis, but lower than expected. Subsequently re-designed Nottingham TSR system presented a high short term survivorship rate that encourages its ongoing use</p

    An Intermittent Live Cell Imaging Screen for siRNA Enhancers and Suppressors of a Kinesin-5 Inhibitor

    Get PDF
    Kinesin-5 (also known as Eg5, KSP and Kif11) is required for assembly of a bipolar mitotic spindle. Small molecule inhibitors of Kinesin-5, developed as potential anti-cancer drugs, arrest cell in mitosis and promote apoptosis of cancer cells. We performed a genome-wide siRNA screen for enhancers and suppressors of a Kinesin-5 inhibitor in human cells to elucidate cellular responses, and thus identify factors that might predict drug sensitivity in cancers. Because the drug's actions play out over several days, we developed an intermittent imaging screen. Live HeLa cells expressing GFP-tagged histone H2B were imaged at 0, 24 and 48 hours after drug addition, and images were analyzed using open-source software that incorporates machine learning. This screen effectively identified siRNAs that caused increased mitotic arrest at low drug concentrations (enhancers), and vice versa (suppressors), and we report siRNAs that caused both effects. We then classified the effect of siRNAs for 15 genes where 3 or 4 out of 4 siRNA oligos tested were suppressors as assessed by time lapse imaging, and by testing for suppression of mitotic arrest in taxol and nocodazole. This identified 4 phenotypic classes of drug suppressors, which included known and novel genes. Our methodology should be applicable to other screens, and the suppressor and enhancer genes we identified may open new lines of research into mitosis and checkpoint biology

    Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?

    Get PDF
    It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations

    Nuclear spin pair coherence in diamond for atomic scale magnetometry

    Full text link
    The nitrogen-vacancy (NV) centre, as a promising candidate solid state system of quantum information processing, its electron spin coherence is influenced by the magnetic field fluctuations due to the local environment. In pure diamonds, the environment consists of hundreds of C-13 nuclear spins randomly spreading in several nanometers range forming a spin bath. Controlling and prolonging the electron spin coherence under the influence of spin bath are challenging tasks for the quantum information processing. On the other hand, for a given bath distribution, many of its characters are encoded in the electron spin coherence. So it is natural to ask the question: is it possible to 'decode' the electron spin coherence, and extract the information about the bath structures? Here we show that, among hundreds of C-13 bath spins, there exist strong coupling clusters, which give rise to the millisecond oscillations of the electron spin coherence. By analyzing these oscillation features, the key properties of the coherent nuclear spin clusters, such as positions, orientations, and coupling strengths, could be uniquely identified. This addressability of the few-nuclear-spin cluster extends the feasibility of using the nuclear spins in diamond as qubits in quantum computing. Furthermore, it provides a novel prototype of single-electron spin based, high-resolution and ultra-sensitive detector for the chemical and biological applications.Comment: 15 pages, 4 figures, Nature Nanotechnology (2011
    corecore